Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 a}}{\sqrt{x}-\sqrt{a}}=$
MathematicsLimitsTS EAMCETTS EAMCET 2018 (05 May Shift 1)
Options:
  • A $-\frac{5}{\sqrt{3}}$
  • B $-\frac{1}{\sqrt{3}}$
  • C $\frac{1}{\sqrt{3}}$
  • D $\frac{2}{\sqrt{3}}$
Solution:
1250 Upvotes Verified Answer
The correct answer is: $\frac{2}{\sqrt{3}}$
We have,
$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 a}}{\sqrt{x}-\sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 a}}{\sqrt{x}-\sqrt{a}} \times \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}} \times \frac{\sqrt{a+2 x}+\sqrt{3 a}}{\sqrt{a+2 x}+\sqrt{3 a}} \\
& =\lim _{x \rightarrow a} \frac{(a+2 x)-3 a}{x-a} \times \frac{\sqrt{x}+\sqrt{a}}{\sqrt{a+2 x}+\sqrt{3 a}} \\
& =\lim _{x \rightarrow a} \frac{2 x-2 a}{x-a} \times \frac{\sqrt{x}+\sqrt{a}}{\sqrt{a+2 x}+\sqrt{3 a}} \\
& =2 \lim _{x \rightarrow a} \frac{(x-a)}{(x-a)} \times \frac{\sqrt{x}+\sqrt{a}}{\sqrt{a+2 x}+\sqrt{3 a}} \\
& =2\left(\frac{\sqrt{a}+\sqrt{a}}{\sqrt{a+2 a}+\sqrt{3 a}}\right)=2 \frac{2 \sqrt{a}}{2 \sqrt{3} a}=\frac{2}{\sqrt{3}}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.