Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \infty}\left[\frac{1^3+2^3+3^3+\ldots \ldots .+n^3}{n^4}\right]=$
MathematicsLimitsJEE Main
Options:
  • A $1$
  • B $\frac{1}{3}$
  • C $\frac{1}{4}$
  • D None of these
Solution:
1827 Upvotes Verified Answer
The correct answer is: $\frac{1}{4}$
\(\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1^3+2^3+3^3+\ldots+n^3}{n^4} \\
& =\lim _{n \rightarrow \infty} \frac{\left[\frac{1}{2} n(n+1)\right]^2}{n^4} \\
& {\left[1^3+2^3+3^3+\ldots+n^3=\left(\frac{1}{2} n(n+1)\right)^2\right]} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{4} n^2(n+1)^2}{n^4} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{4} n^2\left(n^2+1+2 n\right)}{n^4} \\
& =\lim _{4 n \rightarrow \infty} \frac{n^4\left(1+\frac{1}{n^2}+\frac{2}{n}\right)}{n^4} \quad \quad\left[\frac{\infty}{\infty} \text { form }\right] \\
& =\frac{1}{4} \lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n^2}+\frac{2}{n}\right)}{1}
\end{aligned}\)
When \(\mathrm{n} \rightarrow \infty\), then \(\frac{1}{\mathrm{n}} \rightarrow 0=\frac{1}{4}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.