Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}$ is equal to
MathematicsLimitsAP EAMCETAP EAMCET 2012
Options:
  • A $e^4$
  • B $e^6$
  • C $e^5$
  • D $e$
Solution:
2340 Upvotes Verified Answer
The correct answer is: $e^5$
$\begin{aligned} & \lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}=\lim _{x \rightarrow \infty}\left(1+\frac{5}{x+1}\right)^{x+4} \\ & =e^{5 \lim _{x \rightarrow \infty}\left(\frac{x+4}{x+1}\right)}=x \\ & =e^5\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.