Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \infty}\left[\frac{x^2+x+3}{x^2-x+2}\right]^x$ is equal to
MathematicsLimitsTS EAMCETTS EAMCET 2016
Options:
  • A $\infty$
  • B $e$
  • C $e^4$
  • D $e^2$
Solution:
1735 Upvotes Verified Answer
The correct answer is: $e^2$
Given,
$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left[\frac{x^2+x+3}{x^2-x+2}\right]^x \\
& =\lim _{x \rightarrow \infty}\left[1-1+\frac{x^2+x+3}{x^2-x+2}\right]^x \\
& =\lim _{x \rightarrow \infty}\left[1+\frac{x^2+x+3-x^2+x-2}{x^2-x+2}\right]^x \\
& =\lim _{x \rightarrow \infty}\left[1+\frac{2 x+1}{x^2-x+2}\right]^x \\
& =e^{\lim _{x \rightarrow \infty} \frac{2 x+1}{x^2-x+2} \cdot(x)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\therefore \lim _{x \rightarrow \infty}[1+f(x)]^{g(x)}=e^{\lim _{x \rightarrow \infty} f(x) \cdot g(x)}\right]} \\
& =e^{\lim _{x \rightarrow \infty} \frac{2 x^2+x}{x^2-x+2}}=e^2 \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.