Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \infty}\left(\frac{x+5}{x+2}\right)^{x+3}$ equals
MathematicsLimitsVITEEEVITEEE 2009
Options:
  • A $\mathrm{e}$
  • B $\mathrm{e}^{2}$
  • C $\mathrm{e}^{3}$
  • D $\mathrm{e}^{5}$
Solution:
2915 Upvotes Verified Answer
The correct answer is: $\mathrm{e}^{3}$
$$
\begin{array}{l}
\lim _{x \rightarrow \infty}\left(\frac{x+5}{x+2}\right)^{x+3}=\lim _{x \rightarrow \infty}\left(1+\frac{3}{x+2}\right)^{x+3} \\
=\lim _{x \rightarrow \infty}\left[\left(1+\frac{3}{x+2}\right)^{\frac{x+2}{3}}\right]^{\frac{3(x+3)}{x+2}} \\
=e^{\left.\lim _{x \rightarrow \infty}(3] \frac{1+\frac{3}{x}}{x+\frac{2}{x}}\right)}=e^{3}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.