Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Liquids A and B form an ideal solution in the entire composition range. At $350 \mathrm{~K}$, the vapor pressures of pure A and pure B are $7 \times 10^{3} \mathrm{~Pa}$ and $12 \times 10^{3} \mathrm{~Pa}$, respectively. The composition of the vapour is in equilibrium with a solution containing 40 mole percent of $\mathrm{A}$ at this temperature is:
ChemistrySolutionsJEE Main
Options:
  • A $x_{\mathrm{A}}=0.37 ; x_{\mathrm{B}}=0.63$
  • B $x_{\mathrm{A}}=0.28 ; x_{\mathrm{B}}=0.72$
  • C $x_{\mathrm{A}}=0.4 ; x_{\mathrm{B}}=0.6$
  • D $x_{\mathrm{A}}=0.76 ; x_{\mathrm{B}}=0.24$
Solution:
2538 Upvotes Verified Answer
The correct answer is: $x_{\mathrm{A}}=0.28 ; x_{\mathrm{B}}=0.72$
$\mathrm{P}_{\mathrm{A}}^{\circ}=7 \times 10^{3}$

$\mathrm{P}_{\mathrm{B}}^{\circ}=12 \times 10^{3}$

$x_{\mathrm{A}}^{\prime}=0.4 ; x_{\mathrm{B}}^{\prime}=1-0.4$

$x_{\mathrm{B}}^{\prime}=0.6$

$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}^{\circ}}^{x_{\mathrm{A}}^{\prime}}+\mathrm{P}_{\mathrm{B}}^{\circ} x_{\mathrm{B}}^{\prime}$

$=7 \times 10^{3} \times 0.4+12 \times 10^{3} \times 0.6$

$=(7 \times 0.4+12 \times 0.6) \times 10^{3}=10^{4}$

$x_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{A}^{\circ}}^{x^{\prime}} \mathrm{A}}{\mathrm{P}_{\text {total }}}=\frac{7 \times 10^{3} \times 0.4}{10^{4}}$

$\therefore x_{\mathrm{A}}=0.28, x_{\mathrm{B}}=1-0.28=0.72$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.