Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int\left[\log (1+\cos x)-x \tan \left(\frac{x}{2}\right)\right] d x=$
MathematicsIndefinite IntegrationMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $x \log |x|+c$
  • B $x \log |1+\sin x|+c$
  • C $x \log \left|\tan \frac{x}{2}\right|+c$
  • D $x \log |1+\cos x|+c$
Solution:
1855 Upvotes Verified Answer
The correct answer is: $x \log |1+\cos x|+c$
$$
\begin{aligned}
I &=\int\left[\log (1+\cos x)-x \tan \left(\frac{x}{2}\right)\right] d x \\
I &=\int \log (1+\cos x) \cdot 1 d x-\int x \tan \frac{x}{2} d x \\
&=x \log (1+\cos x)-\int \frac{(-\sin x)(x)}{1+\cos x} d x-\int x \tan \frac{x}{2}
\end{aligned}
$$
$=x \log (1+\cos x)+\int \frac{x\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)}{2 \cos ^{2} \frac{x}{2}} d x-\int x \tan \frac{x}{2} d x$
$=x \log (1+\cos x)+\int x \tan \frac{x}{2} d x-\int x \tan \frac{x}{2} d x$
$=x \log (1+\cos x)+c$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.