Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
(log(sinx)+xcotx)dx=
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2019 (03 May Shift 2)
Options:
  • A xlogsinx+c
  • B x2logsinx+c
  • C -xlogsinx+c
  • D -x2logsinx+c
Solution:
1619 Upvotes Verified Answer
The correct answer is: xlogsinx+c

The given integral is I=(log(sinx)+xcotx)dx

I=log(sinx)dx+xcotxdx 1

Let, I1=logsinx·1dx, integrating w.r.t. x, treating 1 as second function, we get, 

I1=x·logsinx-cosxsinx·xdx+c=x·logsinx-cotx·xdx+c, where c is the constant of integration.

I1+I2=I=xlogsinx+c

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.