Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Masses $m,\left(\frac{1}{2}\right) \frac{1}{2} m,\left(\frac{1}{2}\right)^2 \frac{1}{3} m \ldots\left(\frac{1}{2}\right)^{N-1}$
$\frac{1}{N} m \ldots \infty$ are placed at $x=1,2,3, \ldots N, \ldots \infty$
respectively. If the total mass is $M$ then the centre of mass of the system is
PhysicsCenter of Mass Momentum and CollisionAP EAMCETAP EAMCET 2022 (06 Jul Shift 2)
Options:
  • A $\left(\frac{2 m}{M}, 0,0\right)$
  • B $\left(\frac{m}{2 M}, 0,0\right)$
  • C $\left(\frac{4 m}{M}, 0,0\right)$
  • D $\left(\frac{m}{4 M}, 0,0\right)$
Solution:
1043 Upvotes Verified Answer
The correct answer is: $\left(\frac{2 m}{M}, 0,0\right)$
According to given distribution of masses, centre of mass is given as
$$
\begin{aligned}
& X_{\mathrm{CM}}=\frac{m_1 x_1+m_2 x_2+m_3 x_3+\ldots . .+m_n x_n \ldots \infty}{M} \\
& m \times 1+\left(\frac{1}{2}\right) \frac{m}{2} \times 2+\left(\frac{1}{2}\right)^2 \frac{m}{3} \times 3+\ldots . . \\
& =\frac{\left(\frac{1}{2}\right)^{N-1} \cdot \frac{m}{N} \times N+\ldots \infty}{M} \\
& =\frac{m+\left(\frac{1}{2}\right) m+\left(\frac{1}{2}\right)^2 m+\ldots \ldots+\left(\frac{1}{2}\right)^{N-1} m \ldots+\ldots \infty}{M} \\
& =\frac{m}{M}\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\ldots .+\left(\frac{1}{2}\right)^{N-1}+\ldots . \infty\right] \\
& =\frac{m}{M} \cdot \frac{1}{1-1 / 2} \\
& =\frac{m}{M} \cdot \frac{1}{1 / 2}=\frac{2 m}{M} \\
&
\end{aligned}
$$
( $\because$ sum of infinite series in G. P, $\mathrm{S}=\frac{a}{1-r}$ )
$$
=\frac{m}{M} \cdot \frac{1}{1 / 2}=\frac{2 m}{M}
$$
Since, masses are distributed only along $X$-axis, hence
$$
Y_{\mathrm{CM}}=0 \text { and } Z_{\mathrm{CM}}=0
$$
Position of centre of mass $=\left(\frac{2 m}{M}, 0,0\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.