Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Match the following items from List I into List II


Select the correct choice
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2023 (12 May Shift 2)
Options:
  • A $1-\mathrm{C}, 2-\mathrm{E}, 3-\mathrm{B}, 4-\mathrm{A}$
  • B $1-\mathrm{C}, 2-\mathrm{D}, 3-\mathrm{B}, 4-\mathrm{A}$
  • C $1-\mathrm{D}, 2-\mathrm{C}, 3-\mathrm{A}, 4-\mathrm{B}$
  • D $1-\mathrm{C}, 2-\mathrm{E}, 3-\mathrm{A}, 4-\mathrm{D}$
Solution:
2446 Upvotes Verified Answer
The correct answer is: $1-\mathrm{C}, 2-\mathrm{D}, 3-\mathrm{B}, 4-\mathrm{A}$
$$
\text { (i) } \int \frac{\sin ^2 x}{\cos ^4 x} d x=\int \tan ^2 x \cdot \sec ^2 x d x
$$

Let $\tan x=t, \sec ^2 x d x=d t$
$$
\int t^2 d t=\frac{t^3}{3}+C=\frac{\tan ^3 x}{3}+C
$$
$$
\begin{aligned}
& \text { (ii) } \int \frac{\sin ^4 x}{\cos ^2 x} d x=\int \frac{\left(1-\cos ^2 x\right)^2}{\cos ^2 x} d x \\
& =\int\left(\sec ^2 x+\cos ^2 x-2\right) d x \\
& =\int \sec ^2 x d x+\int \cos ^2 x d x-\int 2 d x \\
& =\tan x-2 x+\int \frac{1+\cos 2 x}{2} d x \\
& =\tan x-2 x+\frac{1}{2} x+\frac{1}{4} \sin 2 x+C \\
& =\tan x+\frac{\sin 2 x}{4}-\frac{3 x}{2}+C
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.