Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Match the following List-I with List-II.
\(\begin{array}{cccc}
\hline & \text { List-I } & & \text { List-II } \\
\hline \text { A. } & \oint E d A & \text { (i) } & 0 \\
\hline \text { B. } & \oint B d A & \text { (ii) } & -\frac{d \phi_B}{d t} \\
\hline \text { C. } & \oint E d l & \text { (iii) } & \frac{Q}{E_0} \\
\hline \text { D. } & \oint B d l & \text { (iv) } & \mu_0\left(i_c+i_d\right)
\end{array}\)
PhysicsElectromagnetic WavesAP EAMCETAP EAMCET 2019 (22 Apr Shift 1)
Options:
  • A \(\begin{array}{cccc} \text { A } & \text { B } & \text { C } & \text { D } \\ \text { (iii) } & \text { (ii) } & \text { (i) } & \text { (iv) }\end{array}\)
  • B \(\begin{array}{cccc} \text { A } & \text { B } & \text { C } & \text { D } \\ \text { (iv) } & \text { (i) } & \text { (iii) } & \text { (ii) } \end{array}\)
  • C \(\begin{array}{cccc} \text { A } & \text { B } & \text { C } & \text { D } \\ \text { (iii) } & \text { (i) } & \text { (ii) } & \text { (iv) }\end{array}\)
  • D \(\begin{array}{cccc} \text { A } & \text { B } & \text { C } & \text { D } \\ \text { (iii) } & \text { (i) } & \text { (iv) } & \text { (ii) } \end{array}\)
Solution:
1050 Upvotes Verified Answer
The correct answer is: \(\begin{array}{cccc} \text { A } & \text { B } & \text { C } & \text { D } \\ \text { (iii) } & \text { (i) } & \text { (ii) } & \text { (iv) }\end{array}\)
\(\mathrm{A} \rightarrow\) III According to Gauss's law, total electric flux passing through a closed surface is equal to \(\frac{1}{\varepsilon_0}\) times the total charge enclosed within the surface. i.e., \(\quad \phi=\oint \mathbf{E}. d \mathbf{A}=\frac{Q}{\varepsilon_0}\)
\(\mathrm{B} \rightarrow \mathrm{I}\), According to gauss' law of magnetism, total magnetic flux passing through a bar magnet around its enclosed surface is zero because the magnetic lines of forces emerging from North-pole is equal to magnetic lines of force entering into South direction.
i.e., \(\oint B. d A=0\)
\(\mathrm{C} \rightarrow\) II, The electromotive force in a wire is the line integral,
\(E=\int \mathbf{E} \cdot d \mathbf{l}\)...(i)
But, by Faraday's law of electromagnetic induction, (EMI)
\(\varepsilon=-\frac{d \phi B}{d t}\)
From Eqs. (i) and (ii), we get
\(\int \mathbf{E} \cdot d \mathbf{l}=-\frac{d \phi B}{d t}\)
\(\mathrm{D} \rightarrow \mathrm{IV}\), According to the Maxwell, when electric field and hence electric flux charges with time, then an additional current comes into existence to the conduction current called displacement current. Therefore, the total current across the loop,
\(I=I_c+I_d\)
Hence, the modified form of the Ampere's law is
\(\oint \mathbf{B} \cdot d \mathbf{l}=\mu_0\left[I_c+I_d\right]\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.