Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

MathematicsSequences and SeriesJEE MainJEE Main 2013 (25 Apr Online)
Options:
  • A
    2925
  • B
    1469
  • C
    1728
  • D
    1456
Solution:
2166 Upvotes Verified Answer
The correct answer is:
2925
Consider $1^2+3^2+5^2+\ldots \ldots+25^2$ $n^{\text {th }}$ term $\mathrm{T}_n=(2 n-1)^2, n=1, \ldots \ldots 13$
Now, $\mathrm{S}_n=\sum_{n=1}^{13} \mathrm{~T}_n=\sum_{n=1}^{13}(2 n-1)^2$
$$
\begin{aligned}
&=\sum_{n=1}^{13} 4 n^2+\sum_{n=1}^{13} 1-\sum_{n=1}^{13} 4 n \\
&=4 \sum n^2+13-4 \sum n
\end{aligned}
$$
$$
=4\left[\frac{n(n+1)(2 n+1)}{6}\right]+13-4 \frac{n(n+1)}{2}
$$
Put $n=13$, we get
$$
\begin{aligned}
&\mathrm{S}_n=26 \times 14 \times 9+13-26 \times 14 \\
&=3276+13-364 \\
&=2925 .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.