Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2023 (12 May Shift 2)
Options:
  • A $\frac{-\sqrt{5}+1}{8}$
  • B $\frac{\sqrt{5}-1}{8}$
  • C $\frac{\sqrt{5}+1}{8}$
  • D $\frac{-\sqrt{5}-1}{8}$
Solution:
1687 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{5}+1}{8}$
$$
\begin{aligned}
& \text { Let } A=\cos ^2 48^{\circ}-\sin ^2 12^{\circ} \\
& =\cos ^2\left(30^{\circ}+18^{\circ}\right)-\sin ^2\left(30^{\circ}-18^{\circ}\right) \\
& =\left[\cos 30^{\circ} \cos 18^{\circ}-\sin 30^{\circ} \sin 18^{\circ}\right]^2 \\
& =\left[\frac{\sqrt{3} \cos 30^{\circ} \cos 18^{\circ}-\sin 18^{\circ}}{2}\right]^2-\left[\frac{\left.\cos 18^{\circ}-\sqrt{3} \cos 30^{\circ}\right]^{\circ}}{2}\right]^2 \\
& =\frac{3 \cos ^2 18^{\circ}+\sin ^2 18-2 \sqrt{3} \sin 18^{\circ} \cos 18^{\circ}}{4} \\
& \quad-\frac{\cos ^2 18^{\circ}+3 \sin ^2 18-2 \sqrt{3} \sin 18^{\circ} \cos 18^{\circ}}{4} \\
& =\frac{\cos ^2 18^{\circ}-\sin ^2 18^{\circ}}{2}
\end{aligned}
$$

Note that $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4} \Rightarrow \cos ^2 18^{\circ}=\frac{5+\sqrt{5}}{8}$
$$
\begin{aligned}
& \text { and } \sin ^2 18^{\circ}=\frac{3-\sqrt{5}}{8} \\
\therefore \quad & \mathrm{A}=\frac{\frac{5+\sqrt{5}-3+\sqrt{5}}{8}}{2}=\frac{1+\sqrt{5}}{8}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.