Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Minimise $Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}$

Subject to $\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots, n$

$\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots, m$ is a $L P P$ with number of constr
MathematicsLinear ProgrammingBITSATBITSAT 2015
Options:
  • A $m-n$
  • B $m$
  • C $\mathrm{m}+\mathrm{n}$
  • D $\frac{\mathrm{m}}{\mathrm{n}}$
Solution:
1405 Upvotes Verified Answer
The correct answer is: $\mathrm{m}+\mathrm{n}$
Constraints will be

$$

\mathrm{x}_{11}+\mathrm{x}_{21}+\ldots .+\mathrm{x}_{\mathrm{ml}}=\mathrm{b}_{1}

$$

$\mathrm{x}_{12}+\mathrm{x}_{22}+\ldots \ldots \mathrm{x}_{\mathrm{m} 2}=\mathrm{b}_{2}$

$\mathrm{x}_{\ln }+\mathrm{x}_{2 \mathrm{n}}+\ldots .+\mathrm{x}_{\mathrm{mn}}=\mathrm{b}_{\mathrm{n}}$

$\mathrm{x}_{11}+\mathrm{x}_{12}+\ldots+\mathrm{x}_{1 \mathrm{n}}=\mathrm{b}_{1}$

$\mathrm{x}_{21}+\mathrm{x}_{22}+\ldots+\mathrm{x}_{2 \mathrm{n}}=\mathrm{b}_{2}$

$\mathrm{x}_{\mathrm{ml}}+\mathrm{x}_{\mathrm{m} 2}+\ldots+\mathrm{x}_{\mathrm{mn}}=\mathrm{b}_{\mathrm{n}}$

So, total number of constraints $=\mathrm{m}+\mathrm{n}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.