Search any question & find its solution
Question:
Answered & Verified by Expert
' $n$ ' number of liquid drops each of radius ' $r$ ' coalesce to form a single drop of radius ' $R$ '. The energy released in the process is converted into the kinetic energy of the big drop so formed. The speed of the big drop is [T = surface tension of liquid, $\rho=$ density of liquid.]
Options:
Solution:
1176 Upvotes
Verified Answer
The correct answer is:
$\sqrt{\frac{6 \mathrm{~T}}{\rho}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right]}$
$\begin{aligned}
& \frac{4}{3} \pi R^3=n \times \frac{4}{3} \pi r^3... (given) \\
\therefore \quad & R^3=n r^3
\end{aligned}$
Energy released,
$\begin{aligned}
\Delta \mathrm{U} & =\mathrm{T} \times 4 \pi \mathrm{r}^2 \times \mathrm{n}-\mathrm{T} \times 4 \pi \mathrm{R}^2 \\
& =\mathrm{T} \times 4 \pi \frac{\mathrm{R}^3}{\mathrm{r}}-\mathrm{T} \times 4 \pi \mathrm{R}^2
\end{aligned}$
This energy is converted into K.E
$\begin{array}{ll}
\therefore \quad & \frac{1}{2} m v^2=T \times 4 \pi R^3\left[\frac{1}{r}-\frac{1}{R}\right] \\
\Rightarrow & \frac{1}{2} \rho \times \frac{4}{3} \pi R^3 \times v^2=T \times 4 \pi R^3\left[\frac{1}{r}-\frac{1}{R}\right] \\
& v^2=\frac{6 T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right] \\
\therefore \quad v & =\sqrt{\frac{6 T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}
\end{array}$
& \frac{4}{3} \pi R^3=n \times \frac{4}{3} \pi r^3... (given) \\
\therefore \quad & R^3=n r^3
\end{aligned}$
Energy released,
$\begin{aligned}
\Delta \mathrm{U} & =\mathrm{T} \times 4 \pi \mathrm{r}^2 \times \mathrm{n}-\mathrm{T} \times 4 \pi \mathrm{R}^2 \\
& =\mathrm{T} \times 4 \pi \frac{\mathrm{R}^3}{\mathrm{r}}-\mathrm{T} \times 4 \pi \mathrm{R}^2
\end{aligned}$
This energy is converted into K.E
$\begin{array}{ll}
\therefore \quad & \frac{1}{2} m v^2=T \times 4 \pi R^3\left[\frac{1}{r}-\frac{1}{R}\right] \\
\Rightarrow & \frac{1}{2} \rho \times \frac{4}{3} \pi R^3 \times v^2=T \times 4 \pi R^3\left[\frac{1}{r}-\frac{1}{R}\right] \\
& v^2=\frac{6 T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right] \\
\therefore \quad v & =\sqrt{\frac{6 T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}
\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.