Search any question & find its solution
Question:
Answered & Verified by Expert
On the set $R$ of real numbers, the relation $\rho$ is defined by $x \rho y,(x, y) \in R$
Options:
Solution:
1299 Upvotes
Verified Answer
The correct answer is:
If $x>|y|$, then $p$ is transitive but neither reflexve nor symmetric.
On the set $R$ of real numbers
For reflexive,
$x \rho x \Rightarrow(x, x) \in R$
$\Rightarrow x > |x|$ which is not true. $\Rightarrow \rho$ is not reflexive.
For symmetric,
$(x, y) \in R \Rightarrow x > |y|$
and $(y, x) \in R \Rightarrow y > |x|$
So, $x > |y| \neq y > |x|$ $\Rightarrow \rho$ is not symmetric.
For transitive, $(x, y) \in R \Rightarrow x > |y|(y, z) \in R \Rightarrow y > |z|$
$\Rightarrow x > |z| \Rightarrow(x, z) \in R$
$\Rightarrow \rho$ is transitive.
For reflexive,
$x \rho x \Rightarrow(x, x) \in R$
$\Rightarrow x > |x|$ which is not true. $\Rightarrow \rho$ is not reflexive.
For symmetric,
$(x, y) \in R \Rightarrow x > |y|$
and $(y, x) \in R \Rightarrow y > |x|$
So, $x > |y| \neq y > |x|$ $\Rightarrow \rho$ is not symmetric.
For transitive, $(x, y) \in R \Rightarrow x > |y|(y, z) \in R \Rightarrow y > |z|$
$\Rightarrow x > |z| \Rightarrow(x, z) \in R$
$\Rightarrow \rho$ is transitive.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.