Search any question & find its solution
Question:
Answered & Verified by Expert
One $\mathrm{Kg}$ of copper is drawn into a wire of $1 \mathrm{~mm}$ diameter and a wire of $2 \mathrm{~mm}$ diameter. The resistance of the two wires will be in the ratio
Options:
Solution:
2331 Upvotes
Verified Answer
The correct answer is:
$16: 1$
Mass $=\left(\pi \mathrm{r}_1^2 \ell_1\right) \sigma$ (Ist wire)
$\begin{aligned} & \text { Mass }=\left(\pi \mathrm{r}_1^2 \ell_2\right) \sigma(2 \text { nd wire) } \\ & \left(\pi \mathrm{r}_1^2 \ell_1\right) \sigma=\left(\pi \mathrm{r}_2^2 \ell_2\right) \sigma\end{aligned}$
$\begin{aligned} & \left(\pi \mathrm{r}_1^2 \ell_1\right) \sigma=\left(\pi \mathrm{r}_2^2 \ell_2\right) \sigma \\ & \frac{\ell_1}{\ell_2}=\left(\frac{r_2}{r_1}\right)^2\end{aligned}$
$\frac{R_1}{R_2}=\frac{\rho \frac{\ell_1}{A_1}}{\rho \frac{\ell_2}{A_2}}=\frac{\ell_1}{\ell_2} \times \frac{A_2}{A_1}=\frac{\ell_1}{\ell_2} \times\left(\frac{r_2}{r_1}\right)^2$
$\begin{aligned} & =\left(\frac{r_2}{r_1}\right)^4 \\ & \Rightarrow 16: 1\end{aligned}$
$\begin{aligned} & \text { Mass }=\left(\pi \mathrm{r}_1^2 \ell_2\right) \sigma(2 \text { nd wire) } \\ & \left(\pi \mathrm{r}_1^2 \ell_1\right) \sigma=\left(\pi \mathrm{r}_2^2 \ell_2\right) \sigma\end{aligned}$
$\begin{aligned} & \left(\pi \mathrm{r}_1^2 \ell_1\right) \sigma=\left(\pi \mathrm{r}_2^2 \ell_2\right) \sigma \\ & \frac{\ell_1}{\ell_2}=\left(\frac{r_2}{r_1}\right)^2\end{aligned}$
$\frac{R_1}{R_2}=\frac{\rho \frac{\ell_1}{A_1}}{\rho \frac{\ell_2}{A_2}}=\frac{\ell_1}{\ell_2} \times \frac{A_2}{A_1}=\frac{\ell_1}{\ell_2} \times\left(\frac{r_2}{r_1}\right)^2$
$\begin{aligned} & =\left(\frac{r_2}{r_1}\right)^4 \\ & \Rightarrow 16: 1\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.