Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
One of the values of $\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}$ is
MathematicsComplex NumberVITEEEVITEEE 2018
Options:
  • A $\frac{1}{2}(\sqrt{3}+i)$
  • B $-i$
  • C $i$
  • D $-\sqrt{3}+i$
Solution:
1552 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}(\sqrt{3}+i)$
$$
\begin{aligned}
&\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{2 / 3} \\
=&\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)^{2 / 3} \\
=&\left(\cos \frac{2}{3} \times 45^{\circ}+i \sin \frac{2}{3} 45^{\circ}\right) \\
=& \cos 30^{\circ}+i \sin 30^{\circ} \\
=& \frac{\sqrt{3}}{2}+i \times \frac{1}{2}=\frac{1}{2}(\sqrt{3}+i)
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.