Search any question & find its solution
Question:
Answered & Verified by Expert
\(P Q\) represents a wavefront and \(A O\) and \(B P\), the corresponding two rays. Find the condition on \(Q\) for constructive interference at \(P\) between ray \(B P\) and reflected ray \(O P\).

Options:

Solution:
2686 Upvotes
Verified Answer
The correct answer is:
\(\cos \theta=\frac{\lambda}{4 d}\)
According to figure, point \(P\) and point \(Q\) are at same phase.
According to figure,

In \(\triangle P O R\),
\(\begin{aligned}
& \cos \theta=\frac{P R}{O P}=\frac{d}{O P} \\
& \Rightarrow \quad O P=\frac{d}{\cos \theta} \quad \ldots (i)
\end{aligned}\)
In \(\triangle Q O P\),
\(\begin{aligned}
& & \sin \left(90^{\circ}-2 \theta\right) & =\frac{O Q}{O P} \\
\Rightarrow & & \cos 2 \theta & =\frac{O Q}{O P} \\
\Rightarrow & & O Q & =O P \cos 2 \theta \quad \ldots (ii)
\end{aligned}\)
\(\therefore\) Path difference,
\(\begin{aligned}
& \Delta=O P+O Q=O P+O P \cos 2 \theta \\
& =O P(1+\cos 2 \theta) \quad\left[\because 1+\cos 2 \theta=2 \cos ^2 \theta\right] \\
& =\frac{d}{\cos \theta} \cdot 2 \cos ^2 \theta \quad \text { [from Eq. (i)] } \\
& =2 d \cos \theta
\end{aligned}\)
But path difference is \(\frac{\lambda}{2}\).
\(\begin{aligned}
& \therefore & 2 d \cos \theta & =\frac{\lambda}{2} \\
\Rightarrow & & \cos \theta & =\frac{\lambda}{4 d}
\end{aligned}\)
According to figure,

In \(\triangle P O R\),
\(\begin{aligned}
& \cos \theta=\frac{P R}{O P}=\frac{d}{O P} \\
& \Rightarrow \quad O P=\frac{d}{\cos \theta} \quad \ldots (i)
\end{aligned}\)
In \(\triangle Q O P\),
\(\begin{aligned}
& & \sin \left(90^{\circ}-2 \theta\right) & =\frac{O Q}{O P} \\
\Rightarrow & & \cos 2 \theta & =\frac{O Q}{O P} \\
\Rightarrow & & O Q & =O P \cos 2 \theta \quad \ldots (ii)
\end{aligned}\)
\(\therefore\) Path difference,
\(\begin{aligned}
& \Delta=O P+O Q=O P+O P \cos 2 \theta \\
& =O P(1+\cos 2 \theta) \quad\left[\because 1+\cos 2 \theta=2 \cos ^2 \theta\right] \\
& =\frac{d}{\cos \theta} \cdot 2 \cos ^2 \theta \quad \text { [from Eq. (i)] } \\
& =2 d \cos \theta
\end{aligned}\)
But path difference is \(\frac{\lambda}{2}\).
\(\begin{aligned}
& \therefore & 2 d \cos \theta & =\frac{\lambda}{2} \\
\Rightarrow & & \cos \theta & =\frac{\lambda}{4 d}
\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.