Search any question & find its solution
Question:
Answered & Verified by Expert
Point masses $1,2,3$ and 4 kg are lying at the points $(0,0,0),(2,0,0),(0,3,0)$ and $(-2,-2,0)$ respectively. The moment of inertia of this system about $X$-axis will be
Options:
Solution:
2908 Upvotes
Verified Answer
The correct answer is:
$43 \mathrm{~kg}-\mathrm{m}^2$
Moment of inertia of the whole system about the axis of rotation will be equal to the sum of the moments of inertia of all the particles.

$I=I_1+I_2+I_3+I_4$
$\therefore I=m_1 r_1^2+m_2 r_2^2+m_3 r_3^2+m_4 r_4^2$
$I=(1 \times 0)+(2 \times 0)+\left(3 \times 3^2\right)+4(-2)^2$
$I=0+0+27+16=43 \mathrm{~kg}-\mathrm{m}^2$

$I=I_1+I_2+I_3+I_4$
$\therefore I=m_1 r_1^2+m_2 r_2^2+m_3 r_3^2+m_4 r_4^2$
$I=(1 \times 0)+(2 \times 0)+\left(3 \times 3^2\right)+4(-2)^2$
$I=0+0+27+16=43 \mathrm{~kg}-\mathrm{m}^2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.