Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Position of a $2 \mathrm{~kg}$ mass moving along the $X$-axis is given by $x=2 \cos [(2) t] \mathrm{m}$. Then maximum kinetic energy of the mass in joule is
PhysicsOscillationsAP EAMCETAP EAMCET 2022 (08 Jul Shift 2)
Options:
  • A $4$
  • B $8$
  • C $12$
  • D $16$
Solution:
2043 Upvotes Verified Answer
The correct answer is: $16$
Position of particle, $x=2 \cos (2 t)$
$\Rightarrow$ Velocity of particle, $v=\frac{d x}{d t}=\frac{d}{d t} 2 \cos 2 t$
$\Rightarrow \quad v=-2 \sin 2 t \times \frac{d}{d t} 2 t \Rightarrow v=-4 \sin 2 t$
Velocity is maximum when $\sin 2 t=1$. Hence maximum kinetic energy of particle is
$K_{\max }=\frac{1}{2} m\left(v_{\max }\right)^2$
Substituting $m=2 \mathrm{~kg}$ and $v_{\max }=-4 \mathrm{~m} / \mathrm{s}$;
$\Rightarrow \quad K_{\max }=\frac{1}{2} \times 2 \times(-4)^2=16 \mathrm{~J}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.