Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$P Q$ is a double ordinate of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ such that $\triangle O P Q$ is an equilateral triangle, $O$ being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
MathematicsHyperbolaWBJEEWBJEE 2022
Options:
  • A $1 < \mathrm{e} < 2 / \sqrt{3}$
  • B $\mathrm{e}=2 / \sqrt{3}$
  • C $\mathrm{e}=2 \sqrt{3}$
  • D $\mathrm{e} > 2 / \sqrt{3}$
Solution:
2182 Upvotes Verified Answer
The correct answer is: $\mathrm{e} > 2 / \sqrt{3}$
$\tan 30^{\circ}=\frac{b \tan \theta}{a \sec \theta}$
$\Rightarrow \frac{b}{a}=\frac{1}{\sin \theta \sqrt{3}}$
$e=\sqrt{1+\frac{1}{3 \sin ^2 \theta}} > \sqrt{1+\frac{1}{3}}$
$\Rightarrow e > \frac{2}{\sqrt{3}}\left(0 < \sin ^2 \theta < 1\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.