Search any question & find its solution
Question:
Answered & Verified by Expert
Probability of solving specific problem independently by A and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved
(ii) exactly one of them solves the problem.
(i) the problem is solved
(ii) exactly one of them solves the problem.
Solution:
1677 Upvotes
Verified Answer
Probability that A solves the problem $=\frac{1}{2}$
$\Rightarrow$ Probablility that A does not solve the problem $P(\bar{A})=1-\frac{1}{2}=\frac{1}{2}$
Probability that $\mathrm{B}$ solves the problem $=\frac{1}{3}$
$\Rightarrow$ Probability that $\mathrm{B}$ does not solved the problem $=1-\frac{1}{3}=\frac{2}{3}$
(i) Probability that problem is not solved $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\overline{\mathrm{B}})=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}$ $\Rightarrow$ Probability that problem is solved $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\frac{1}{3}=\frac{2}{3}$
(ii) Exactly one of then solves the problem $=P(A \cap \bar{B})+P(\bar{A} \cap B)$ $=\mathrm{P}(\mathrm{A}) \mathrm{P}(\overline{\mathrm{B}})+\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\mathrm{B})$
Since $\mathrm{A}$ and $\mathrm{B}$ are independent events $\mathrm{So} \overline{\mathrm{A}} \cap \mathrm{B}$ and $\mathrm{A} \cap \overline{\mathrm{B}}$ are also independent
Now
$$
\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{2}{3}, \mathrm{P}(\overline{\mathrm{A}})=\frac{1}{2}, \mathrm{P}(\overline{\mathrm{B}})=\frac{1}{3}
$$
Exactly one of them solves the problem
$$
=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}=\frac{1}{3}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$
$\Rightarrow$ Probablility that A does not solve the problem $P(\bar{A})=1-\frac{1}{2}=\frac{1}{2}$
Probability that $\mathrm{B}$ solves the problem $=\frac{1}{3}$
$\Rightarrow$ Probability that $\mathrm{B}$ does not solved the problem $=1-\frac{1}{3}=\frac{2}{3}$
(i) Probability that problem is not solved $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\overline{\mathrm{B}})=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}$ $\Rightarrow$ Probability that problem is solved $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\frac{1}{3}=\frac{2}{3}$
(ii) Exactly one of then solves the problem $=P(A \cap \bar{B})+P(\bar{A} \cap B)$ $=\mathrm{P}(\mathrm{A}) \mathrm{P}(\overline{\mathrm{B}})+\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\mathrm{B})$
Since $\mathrm{A}$ and $\mathrm{B}$ are independent events $\mathrm{So} \overline{\mathrm{A}} \cap \mathrm{B}$ and $\mathrm{A} \cap \overline{\mathrm{B}}$ are also independent
Now
$$
\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{2}{3}, \mathrm{P}(\overline{\mathrm{A}})=\frac{1}{2}, \mathrm{P}(\overline{\mathrm{B}})=\frac{1}{3}
$$
Exactly one of them solves the problem
$$
=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}=\frac{1}{3}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.