Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Prove that,
$\cot 4 x[\sin 5 x+\sin 3 x]=\cot x(\sin 5 x-\sin 3 x)$
MathematicsTrigonometric Functions
Solution:
2940 Upvotes Verified Answer
$\begin{aligned} \text { LHS } &=\cot 4 x[\sin 5 x+\sin 3 x] \\ &=\cot 4 x[2 \sin 4 x \cos x] \end{aligned}$
$=\frac{\cos 4 x}{\sin 4 x} \times 2 \sin 4 x \cos x=2 \cos x \cos 4 x$
$=\frac{\cos x}{\sin x} \times(2 \cos 4 x \sin x)$
$=\frac{\cos x}{\sin x} \times(\sin 5 x-\sin 3 x)$
${[\because 2 \cos \mathrm{A} \sin \mathrm{B}=\sin (\mathrm{A}+\mathrm{B})-\sin (\mathrm{A}-\mathrm{B})] }$
$=\cot x(\sin 5 x-\sin 3 x)=\mathrm{RHS}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.