Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\sum_{r=0}^{10}{ }^{40-r} C_5$ is equal to
MathematicsBinomial TheoremTS EAMCETTS EAMCET 2015
Options:
  • A ${ }^{41} C_5-{ }^{30} C_5$
  • B ${ }^{41} C_6-{ }^{30} C_6$
  • C ${ }^{41} \mathrm{C}_5+{ }^{30} \mathrm{C}_5$
  • D ${ }^{41} C_6$
Solution:
1419 Upvotes Verified Answer
The correct answer is: ${ }^{41} C_6-{ }^{30} C_6$
$$
\begin{aligned}
& \text { } \sum_{r=0}^{10}{ }^{40-r} C_5={ }^{30} C_5+{ }^{31} C_5+{ }^{32} C_5+{ }^{33} C_5 \\
& +\ldots+{ }^{40} C_5 \\
& \because{ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r \\
& \Rightarrow \quad{ }^n C_{r-1}={ }^{n+1} C_r-{ }^n C_r \\
& \therefore \quad{ }^{30} C_5={ }^{31} C_6-{ }^{30} C_6 \\
& { }^{31} C_5={ }^{32} C_6-{ }^{31} C_6 \\
&
\end{aligned}
$$



On adding, we get
$$
\sum_{r=0}^{10}{ }^{40-r} C_5={ }^{41} C_6-{ }^{30} C_6
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.