Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
R is the radius of Earth and $\omega$ is its angular velocity and $g_p$ is the value of $g$ at the poles. The effective value of $g$ at a latitude $\lambda=60^{\circ}$.
PhysicsGravitationJIPMERJIPMER 2018
Options:
  • A $g_p-\frac{1}{4} R \omega^2$
  • B $g_p+\frac{1}{4} R \omega^2$
  • C $g_p-\frac{1}{2} R \omega^2$
  • D $g_p+\frac{1}{2} R \omega^2$
Solution:
1743 Upvotes Verified Answer
The correct answer is: $g_p-\frac{1}{4} R \omega^2$
The acceleration due to gravity at a latitude $\lambda$ is
$\mathrm{g}^{\prime}=\mathrm{g}-\mathrm{R} \omega^2 \cos ^2 \lambda$
At the poles, $\lambda=90^{\circ}$
$\therefore \quad \mathrm{g}^{\prime}=\mathrm{g}=\mathrm{g}_{\mathrm{p}}$
For $\quad \lambda=60^{\circ}$,
$\mathrm{g}^{\prime}=\mathrm{g}_{\mathrm{p}}-\mathrm{R} \omega^2 \cos ^2 \lambda$
or $\quad g^{\prime}=g_p-R \omega^2 \cos ^2 60^{\circ}$
$=g_p-R \omega^2\left(\frac{1}{2}\right)^2=g_p-\frac{1}{4} R \omega^2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.