Search any question & find its solution
Question:
Answered & Verified by Expert
[ . ] represents greatest integer function, then $\int_{-1}^1(x[1+\sin \pi x]+1) d x=$
Options:
Solution:
2047 Upvotes
Verified Answer
The correct answer is:
$\frac{5}{2}$
$\int_{-1}^1(x[1+\sin \pi x]+1) d x$
$I=\int_{-1}^1(x[1+\sin \pi x]+1) d x$
We know that, $-1 \leq \sin \pi x \leq 1$
$I=\int_{-1}^0(x[1+\sin \pi x]+1) d x+\int_0^1(x(1+\sin \pi x)+1) d x$
$\begin{aligned} & \Rightarrow \quad I=\int_{-1}^0(x \cdot 0+1) d x+\int_0^1(x+1) d x \\ & \Rightarrow \quad I=[x]_{-1}^0+\left[\frac{x^2}{2}+x\right]_0^1 \\ & \Rightarrow \quad I=0-(-1)+\left[\frac{1}{2}+1\right] \\ & \Rightarrow \quad I=2+\frac{1}{2}=\frac{5}{2}\end{aligned}$
$I=\int_{-1}^1(x[1+\sin \pi x]+1) d x$
We know that, $-1 \leq \sin \pi x \leq 1$
$I=\int_{-1}^0(x[1+\sin \pi x]+1) d x+\int_0^1(x(1+\sin \pi x)+1) d x$
$\begin{aligned} & \Rightarrow \quad I=\int_{-1}^0(x \cdot 0+1) d x+\int_0^1(x+1) d x \\ & \Rightarrow \quad I=[x]_{-1}^0+\left[\frac{x^2}{2}+x\right]_0^1 \\ & \Rightarrow \quad I=0-(-1)+\left[\frac{1}{2}+1\right] \\ & \Rightarrow \quad I=2+\frac{1}{2}=\frac{5}{2}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.