Search any question & find its solution
Question:
Answered & Verified by Expert
Resistor of $2 \Omega$, inductor of $100 \mu \mathrm{H}$ and capacitor of $400 \mathrm{pF}$ are connected in series across a source of $\mathrm{e}_{\mathrm{rms}}=0.1$ Volt. At resonance, voltage drop across inductor is
Options:
Solution:
1052 Upvotes
Verified Answer
The correct answer is:
$25 \mathrm{~V}$
At resonance condition,
$$
\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}
$$
The impedance is given as:
$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^2+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^2} \\
& \mathrm{Z}=\mathrm{R}=2 \Omega \\
& \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{e}_{\mathrm{mms}}}{\mathrm{R}} \\
& \mathrm{I}_{\mathrm{rms}}=\frac{0.1}{2}=0.05 \mathrm{~A} \\
& \omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{10^{-4} \times 4 \times 10^{-10}}} \\
& \omega=5 \times 10^6
\end{aligned}
$$
$\therefore \quad$ The voltage-drop across the inductor is,
$$
\begin{aligned}
& \mathrm{V}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{X}_{\mathrm{L}}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{L} \omega \\
& \mathrm{V}=0.05 \times 10^{-4} \times 5 \times 10^6 \\
& \mathrm{~V}=25 \mathrm{~V}
\end{aligned}
$$
$$
\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}
$$
The impedance is given as:
$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^2+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^2} \\
& \mathrm{Z}=\mathrm{R}=2 \Omega \\
& \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{e}_{\mathrm{mms}}}{\mathrm{R}} \\
& \mathrm{I}_{\mathrm{rms}}=\frac{0.1}{2}=0.05 \mathrm{~A} \\
& \omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{10^{-4} \times 4 \times 10^{-10}}} \\
& \omega=5 \times 10^6
\end{aligned}
$$
$\therefore \quad$ The voltage-drop across the inductor is,
$$
\begin{aligned}
& \mathrm{V}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{X}_{\mathrm{L}}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{L} \omega \\
& \mathrm{V}=0.05 \times 10^{-4} \times 5 \times 10^6 \\
& \mathrm{~V}=25 \mathrm{~V}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.