Search any question & find its solution
Question:
Answered & Verified by Expert
Resultant of two vectors $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ is of magnitude $\mathrm{R}_{1}$. If direction of $\overrightarrow{\mathrm{Q}}$ is reversed, the resultant is of magnitude $\mathrm{R}_{2}$. The value of $\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}\right)$ is $[\cos (\pi-\theta)=-\cos \theta]$
Options:
Solution:
2581 Upvotes
Verified Answer
The correct answer is:
$2\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)$
Given,
$$
P+Q=R
$$
After reversing direction of $R$, we gel
$$
\begin{array}{l}
-R=-P-Q \\
S=-P-Q
\end{array}
$$
So let angle between $P$ and $Q$ be $Q$
So resultants.
$$
\begin{array}{l}
R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\
S^{2}=P^{2}+Q^{2}-2 P Q \cos \theta \quad \frac{-(1)}{(2)}
\end{array}
$$
Adthing equation (1) and (2)
$$
R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)
$$
So, the correct answer is $R^{2}+s^{2}=2\left(p^{2}+Q^{2}\right)$
$$
P+Q=R
$$
After reversing direction of $R$, we gel
$$
\begin{array}{l}
-R=-P-Q \\
S=-P-Q
\end{array}
$$
So let angle between $P$ and $Q$ be $Q$
So resultants.
$$
\begin{array}{l}
R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\
S^{2}=P^{2}+Q^{2}-2 P Q \cos \theta \quad \frac{-(1)}{(2)}
\end{array}
$$
Adthing equation (1) and (2)
$$
R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)
$$
So, the correct answer is $R^{2}+s^{2}=2\left(p^{2}+Q^{2}\right)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.