Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Rolle's theorem is not applicable to the function $f(x) \neq x$ defined on $[-1,1]$ because
MathematicsApplication of DerivativesJEE Main
Options:
  • A $f$ is not continuous on $[-1,1]$
  • B $f$ is not differentiable on $(-1,1)$
  • C $f(-1) \neq f(1)$
  • D $f(-1)=f(1) \neq 0$
Solution:
1667 Upvotes Verified Answer
The correct answer is: $f$ is not differentiable on $(-1,1)$
$f(x)=\left\{\begin{array}{c}
-x, \text { when }-1 \leq x \lt 0 \\
x, \text { when } 0 \leq x \leq 1\end{array}\right.$
Clearly $f(-1)=|-1|=1=f(1)$
$\begin{aligned}& \text { But } R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1 \\
& L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|-h|}{-h}=\lim _{h \rightarrow 0} \frac{h}{-h}=-1 \\
& \therefore R f^{\prime}(0) \neq L f^{\prime}(0)\end{aligned}$
But
Hence it is not differentiable on $(-1,1)$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.