Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{\sin (x-a) \cos (x-b)}=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A $\frac{1}{\sin (a-b)} \log \left|\frac{\sin (x-a)}{\cos (x-b)}\right|+C$
  • B $\frac{1}{\cos (b-a)} \log \left|\frac{\sin (x-a)}{\cos (x-b)}\right|+C$
  • C $\frac{1}{\cos (b-a)}[\log |\sin (x-a) \cos (x-b)|]+C$
  • D $\frac{1}{\sin (a-b)}[\log |\sin (x-a) \cos (x-b)|]+C$
Solution:
2981 Upvotes Verified Answer
The correct answer is: $\frac{1}{\cos (b-a)} \log \left|\frac{\sin (x-a)}{\cos (x-b)}\right|+C$
$\int \frac{d x}{\sin (x-a) \cos (x-b)}$
$=\frac{1}{\cos (b-a)} \int \frac{\cos [(x-a)-(x-b)]}{\sin (x-a) \cos (x-b)}$
$=\frac{1}{\cos (b-a)}$
$\int\left[\frac{\cos (x-a) \cos (x-b)+\sin (x-a) \sin (x-b)}{\sin (x-a) \cos (x-b)}\right] d x$
$\begin{aligned} & =\frac{1}{\cos (b+a)} \int\left[\frac{\cos (x-a)}{\sin (x-a)}+\frac{\sin (x-b)}{\cos (x-b)}\right] d x \\ & =\frac{1}{\cos (b-a)} \quad[\log (\sin (x-a)-\log (\cos (x-b))]+C \\ & =\frac{1}{\cos (b-a)} \log \left|\frac{\sin (x-a)}{\operatorname{cós}(x-b)}\right|+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.