Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\sqrt{\cot x}}{\sin x \cos x} d x=-f(x)+c \Rightarrow f(x)$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2004
Options:
  • A $2 \sqrt{\tan x}$
  • B $-2 \sqrt{\tan x}$
  • C $-2 \sqrt{\cot x}$
  • D $2 \sqrt{\cot x}$
Solution:
2655 Upvotes Verified Answer
The correct answer is: $2 \sqrt{\cot x}$
Given that,
$$
\begin{aligned}
& \int \frac{\sqrt{\cot x}}{\sin x \cos x} d x=-f(x)+c \\
& \Rightarrow \quad \int \frac{\sqrt{\cot x}}{\cot x \sin ^2 x} d x=-f(x)+c \\
& \Rightarrow \quad \int \frac{1}{\sqrt{\cot x \sin ^2 x}} d x=-f(x)+c \\
& \Rightarrow \quad-2 \sqrt{\cot x}+c=-f(x)+c \\
& \Rightarrow \quad f(x)=2 \sqrt{\cot x} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.