Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\int \frac{d x}{\sin x+\sin 2 x}=
$$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2018 (23 Apr Shift 2)
Options:
  • A $\frac{1}{6} \log (1-\cos x)+\frac{1}{2} \log (1+\cos x)+$
    $$
    \frac{2}{3} \log |1+2 \cos x|+c
    $$
  • B $$
    \begin{aligned}
    & \frac{1}{6} \log (1-\cos x)-\frac{1}{2} \log (1+\cos x)- \\
    & \frac{2}{3} \log |1+2 \cos x|+c
    \end{aligned}
    $$
  • C $$
    \begin{aligned}
    & \frac{1}{6} \log (1-\cos x)+\frac{1}{2} \log (1+\cos x)- \\
    & \frac{2}{3} \log |1+2 \cos x|+c
    \end{aligned}
    $$
  • D $\frac{1}{6} \log [(1-\cos x)(1+\cos x)|1+2 \cos x|]+c$
Solution:
2521 Upvotes Verified Answer
The correct answer is: $$
\begin{aligned}
& \frac{1}{6} \log (1-\cos x)+\frac{1}{2} \log (1+\cos x)- \\
& \frac{2}{3} \log |1+2 \cos x|+c
\end{aligned}
$$
$$
\begin{aligned}
& \text { } I=\int \frac{d x}{\sin x+\sin 2 x} \\
& =\int \frac{d x}{\sin x(1+2 \cos x)}=\int \frac{\sin x d x}{\sin ^2 x(1+2 \cos x)} \\
& =\int \frac{\sin x d x}{(1-\cos x)(1+\cos x)(1+2 \cos x)}
\end{aligned}
$$
Let $\cos x=t \Rightarrow-\sin x d x=d t$
So,
$$
I=-\int \frac{d t}{(1-t)(1+t)(1+2 t)}
$$
By partial fraction method
$$
\begin{aligned}
& \frac{1}{(1-t)(1+t)(1+2 t)}=\frac{A}{1-t}+\frac{B}{1+t}+\frac{C}{1+2 t} \\
& \Rightarrow 1=A(1+t)(1+2 t)+B(1-t) \\
& A=\frac{1}{6}, B=\frac{-1}{2} \text { and } C=\frac{4}{3}
\end{aligned}
$$
$A=\frac{1}{6}, B=\frac{-1}{2} \quad$ and $C=\frac{4}{3}$
So,
$$
\begin{aligned}
I=-\frac{1}{6} \int \frac{d t}{1-t} & +\frac{1}{2} \int \frac{d t}{1+t}-\frac{4}{3} \int \frac{d t}{1+2 t} \\
=\frac{1}{6} \log (1-\cos x) & +\frac{1}{2} \log (1+\cos x) \\
& -\frac{2}{3} \log (1+2 \cos x)+c .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.