Search any question & find its solution
Question:
Answered & Verified by Expert
Same amount of electric current is passed through solutions of $\mathrm{AgNO}_{3}$ and $\mathrm{HCl}$. If $1.08 \mathrm{~g}$ of silver is obtained in the first case, the amount of hydrogen liberated at STP in the second case is
Options:
Solution:
1501 Upvotes
Verified Answer
The correct answer is:
$112 \mathrm{~cm}^{3}$
If current is same then,
$$
\begin{aligned}
&E_{\mathrm{wt}} \text { of } \mathrm{Ag}=E_{\mathrm{w}} \text { of } \mathrm{H}_{2} \\
&\quad \frac{1.08}{108}=\frac{x}{1} \\
&\therefore \quad \text { Mass of } \mathrm{H}_{2}, x=10^{-2} \mathrm{~g} \\
&\therefore \quad 2 \mathrm{~g} \text { of } \mathrm{H}_{2} \text { at } \mathrm{STP} \text { occupy } 22400 \mathrm{~cm}^{3} \\
&\therefore \quad 10^{-2} \mathrm{~g} \text { of } \mathrm{H}_{2} \text { at STP occupy } \\
&\quad=\frac{22400}{2} \times 10^{-2} \mathrm{~cm}^{3}=112 \mathrm{~cm}^{3}
\end{aligned}
$$
$$
\begin{aligned}
&E_{\mathrm{wt}} \text { of } \mathrm{Ag}=E_{\mathrm{w}} \text { of } \mathrm{H}_{2} \\
&\quad \frac{1.08}{108}=\frac{x}{1} \\
&\therefore \quad \text { Mass of } \mathrm{H}_{2}, x=10^{-2} \mathrm{~g} \\
&\therefore \quad 2 \mathrm{~g} \text { of } \mathrm{H}_{2} \text { at } \mathrm{STP} \text { occupy } 22400 \mathrm{~cm}^{3} \\
&\therefore \quad 10^{-2} \mathrm{~g} \text { of } \mathrm{H}_{2} \text { at STP occupy } \\
&\quad=\frac{22400}{2} \times 10^{-2} \mathrm{~cm}^{3}=112 \mathrm{~cm}^{3}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.