Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Show that $9^{n+1}-8 n-9$ is divisible by 64 whenever $n$ is a positive integer.
MathematicsBinomial Theorem
Solution:
2292 Upvotes Verified Answer
We have
$(1+x)^{n+1}=C(n+1,0)+C(n+1,1) x$
$+C(n+1,2) x^2+C(n+1,3) x^3$
$+\ldots \ldots \ldots+C(n+1, n+1) x^{n+1}$
Putting $x=8$, we get
$(1+8)^{n+1}=C(n+1,0)+C(n+1,1) 8$
$+C(n+1,2) 8^2+C(n+1,3) 8^3$
$+\ldots \ldots \ldots+C(n+1, n+1) 8^{n+1}$
$9^{n+1}=C(n+1,0)+C(n+1,1) 8+C(n+1,2) 8^2$
$+C(n+1,3) 8^3+\ldots \ldots \ldots \ldots$
$\quad+C(n+1, n+1) 8^{n+1}$
$[\because C(n+1,0)=1$ and $C(n+1,1)=n+1]$
or $9^{n+1}=1+8 n+8+C(n+1,2) 8^2$
$+C(n+1,3) 8^3+\ldots \ldots \ldots$
$+C(n+1, n+1) 8^{n+1}$
or $9^{n+1}-8 n-9$
$=C(n+1,2) 8^2+C(n+1,3) 8^3$
$+\ldots \ldots \ldots+C(n+1, n+1) 8^{n+1}$
$=8^2[C(n+1,2)+C(n+1,3) 8$
$+C(n+1,4) 8^2+\ldots \ldots \ldots \ldots$
$\left.+C(n+1, n+1) 8^{n-1}\right]$
$9^{n+1}-8 n-9=64 \times$ some constant quantity.
Hence, $9^{n+1}-8 n-9$ is divisible by 64 whenever $n$ is a positive integer.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.