Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.
MathematicsApplication of Derivatives
Solution:
2859 Upvotes Verified Answer
Let $\mathrm{S}$ be the given surface area of the closed cylinder whose radius is $r$ and height $h$ let $v$ be the its Volume. Then Surface area $\mathrm{S}=2 \pi \mathrm{r}^2+2 \pi \mathrm{rh}, \mathrm{h}=\frac{\mathrm{S}-2 \pi \mathrm{r}^2}{2 \pi \mathrm{r}} \quad \ldots(i)$


$\therefore$ Volume $\mathrm{V}=\pi \mathrm{r}^2 \mathrm{~h}$
$=\pi r^2\left(\frac{S-2 \pi r^2}{2 \pi r}\right)$
$=\frac{1}{2}\left[\mathrm{Sr}-2 \pi \mathrm{r}^3\right]$
$\therefore \frac{\mathrm{dV}}{\mathrm{dx}}=\frac{1}{2} \times\left[\mathrm{S}-6 \pi \mathrm{r}^2\right] \quad \ldots(ii)$
For maxima and minima $\frac{\mathrm{dV}}{\mathrm{dx}}=0$
$\therefore S=6 \pi r^2 \Rightarrow r=\sqrt{\frac{S}{6 \pi}}$
from (i), $\mathrm{h}=\frac{\mathrm{S}-2 \pi \mathrm{r}^2}{2 \pi \mathrm{r}}$
(Putting values of S)
Now, $\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{dr}^2}=-6 \pi \mathrm{r} < \mathrm{o}$ at $\mathrm{r}=\sqrt{\frac{\mathrm{s}}{6 \pi}}$
$\therefore \mathrm{V}$ is maximum. Thus, volume is maximum when $\mathrm{h}=2 \mathrm{r}$ i.e. when height of cylinder $=$ diameter of the base.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.