Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The area (in square units) of the region enclosed by the ellipse $x^2+3 y^2=18$ in the first quadrant below the line $y=x$ is
MathematicsArea Under CurvesJEE MainJEE Main 2024 (09 Apr Shift 2)
Options:
  • A $\sqrt{3} \pi-\frac{3}{4}$
  • B $\sqrt{3} \pi+1$
  • C $\sqrt{3} \pi$
  • D $\sqrt{3} \pi+\frac{3}{4}$
Solution:
1931 Upvotes Verified Answer
The correct answer is: $\sqrt{3} \pi$
$\frac{x^2}{18}+\frac{y^2}{6}=1$

$\begin{aligned}
& \frac{x^2}{18}+\frac{3 x^2}{18}=1 \Rightarrow 4 x^2=18 \Rightarrow x^2=\frac{9}{2} \\
& \int_{\frac{3}{\sqrt{2}}}^{\sqrt[3]{2}} \frac{\sqrt{18-x^2}}{\sqrt{3}} d x \\
& =\frac{1}{\sqrt{3}}\left(\frac{x \sqrt{18-x^2}}{2}+\frac{18}{2} \sin ^{-1} \frac{x}{3 \sqrt{2}}\right)_{\frac{3}{\sqrt{2}}}^{3 \sqrt{2}} \\
& =\frac{1}{\sqrt{3}}\left(9 \times \frac{\pi}{2}-\frac{3}{2 \sqrt{2}} \times \frac{3 \sqrt{3}}{\sqrt{2}}-9 \times \frac{\pi}{6}\right)
\end{aligned}$
Required Area
$\begin{aligned}
& =\frac{1}{2} \times \frac{9}{2}+\left(\frac{18 \pi}{6}-\frac{9 \sqrt{3}}{4}\right) \frac{1}{\sqrt{3}} \\
& =\sqrt{3} \pi
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.