Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The frequency of vibration of string is given by

$\mathrm{v}=\frac{\mathrm{p}}{2 l}\left[\frac{\mathrm{F}}{\mathrm{m}}\right]^{1 / 2}$

Here $\mathrm{p}$ is number of segments in the string and $l$ is the length. The dimensional formula for $\mathrm{m}$ will be
PhysicsUnits and DimensionsJEE Main
Options:
  • A $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
  • B $\left[\mathrm{ML}^{0} \mathrm{~T}^{-1}\right]$
  • C $\left[\mathrm{ML}^{-1} \mathrm{~T}^{0}\right]$
  • D $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Solution:
2671 Upvotes Verified Answer
The correct answer is: $\left[\mathrm{ML}^{-1} \mathrm{~T}^{0}\right]$
$\mathrm{v}=\frac{\mathrm{p}}{2 \ell}\left[\frac{\mathrm{F}}{\mathrm{m}}\right]^{1 / 2}$

$v^{2}=\frac{p}{4 \ell^{2}} \frac{F}{m} \Rightarrow m=\frac{p^{2} F}{4 \ell^{2} v^{2}}$

Now, dimensional formula of R.H.S.

$=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}\left(\frac{1}{\mathrm{~T}}\right)^{2}}$

[p will have no dimension as it is an integer] $=\mathrm{ML}^{-1} \mathrm{~T}^{0}$

So, dimensions of $\mathrm{m}$ will be $\mathrm{ML}^{-1} \mathrm{~T}^{0}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.