Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The function defined by
$$
f(x)=\left\{\begin{array}{cc}
\frac{x-4}{|x-4|}+a & \text { if } x<4 \\
a+b & \text { if } x=4 \\
\frac{x-4}{|x-4|}+b & \text { if } x>4
\end{array}\right.
$$
is continuous at $x=4$, are
MathematicsContinuity and DifferentiabilityMHT CETMHT CET 2022 (06 Aug Shift 1)
Options:
  • A $a=0, b=1$
  • B $\mathrm{a}=1, \mathrm{~b}=0$
  • C $\mathrm{a}=1, \mathrm{~b}=-1$
  • D $\mathrm{a}=-1, \mathrm{~b}=0$
Solution:
2651 Upvotes Verified Answer
The correct answer is: $\mathrm{a}=1, \mathrm{~b}=-1$
L.H.L at $x=4$
$\lim _{h \rightarrow 0} \frac{4-h-4}{|4-h-4|}+a=\lim _{h \rightarrow 0} \frac{-h}{|-h|}+a=\lim _{h \rightarrow 0} \frac{-h}{h}+a=-1+a$
R.H.L at $x=4$
$\lim _{h \rightarrow 0} \frac{4+h-4}{|4+h-4|}+b=\lim _{h \rightarrow 0} \frac{h}{|h|}+b=\lim _{h \rightarrow 0} \frac{h}{h}+b=1+b$
For continuity at $\mathrm{x}=4$
$-1+\mathrm{a}=\mathrm{a}+\mathrm{b}=1+\mathrm{b} \Rightarrow \mathrm{a}=1$ and $\mathrm{b}=-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.