Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The function $f(x)=3 x^{4}+16 x^{3}-30 x^{2}+10$ is increasing for
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (20 Oct Shift 2)
Options:
  • A every real value of $x$
  • B $x=0, x=1$ only
  • C $x \in(-5,0) \cup(1, \infty)$
  • D $x \in[0,1]$
Solution:
1117 Upvotes Verified Answer
The correct answer is: $x \in(-5,0) \cup(1, \infty)$
$f(x)=3 x^{4}+16 x^{3}-30 x^{2}+10$
$\therefore f^{\prime}(x)=12 x^{3}+48 x^{2}-60 x$
When $f^{\prime}(x)>0$, we write
$\quad x\left(12 x^{2}+48 x-60\right)>0$
$12 x\left(x^{2}+4 x-5\right)>0$
$\therefore f^{\prime}(x)>0$, when $x \in(-5,0) \cup(1, \infty)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.