Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The function $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in
MathematicsApplication of DerivativesJEE MainJEE Main 2007
Options:
  • A
    $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
  • B
    $\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$
  • C
    $\left(0, \frac{\pi}{2}\right)$
  • D
    $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Solution:
2279 Upvotes Verified Answer
The correct answer is:
$\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$
$f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^2}(\cos x-\sin x)$
$=\frac{\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)}{1+(\sin x+\cos x)^2}$
$f(x)$ is increasing if $-\frac{\pi}{2} < x+\frac{\pi}{4} < \frac{\pi}{2}$
$-\frac{3 \pi}{4} < x < \frac{\pi}{4}$
hence $f(x)$ is increasing when $x \in\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.