Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of $\tan 3 x=1$ is
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2020 (14 Oct Shift 1)
Options:
  • A $x=n \pi, n \in Z$
  • B $x=n\left(\frac{\pi}{3}\right)+\frac{\pi}{12}, n \in Z$
  • C $x=n \pi+\frac{\pi}{4}, n \in Z$
  • D $x=n \pi \pm \frac{\pi}{4}, n \in Z$
Solution:
2853 Upvotes Verified Answer
The correct answer is: $x=n\left(\frac{\pi}{3}\right)+\frac{\pi}{12}, n \in Z$
We know that $\tan \theta=\tan \alpha$ implies
$\theta=n \pi+\alpha$, where $n \in Z$
Given $\tan 3 x=1$
$\therefore \tan 3 x=\tan \frac{\pi}{4} \Rightarrow 3 x=n \pi+\frac{\pi}{4}$
$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{3}+\frac{\pi}{12}, \quad \mathrm{n} \in Z$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.