Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $\left(1+y^2\right) d x=\left(\tan ^{-1} y-x\right) d y$ is
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2018 (07 May Shift 1)
Options:
  • A $x \tan ^1 y=e^{\left\langle\tan ^{-1} y 1\right)}+k$
  • B $x \tan ^1 y=e^{\tan ^{-1} y}-1+k$
  • C $x e^{\tan ^{-1} y}=\left(\tan ^1 y-e^y\right)+k$
  • D $x=\left(\tan ^1 y-1\right)+k e^{\tan ^{-1} y}$
Solution:
1706 Upvotes Verified Answer
The correct answer is: $x=\left(\tan ^1 y-1\right)+k e^{\tan ^{-1} y}$
We have,
$$
\begin{aligned}
& \left(1+y^2\right) d x=\left(\tan ^2 y-x\right) d y \\
\Rightarrow \quad & \left(1+y^2\right) \frac{d x}{d y}=\tan ^2 y-x \\
\Rightarrow & \frac{d x}{d y}+\frac{1}{1+y^2} x=\frac{\tan ^2 y}{1+y^2}
\end{aligned}
$$
which is a linear differential equation
$$
\therefore \quad \text { IF }=e^{\int \frac{1}{1+y^2} d y}=e^{\tan { }^2 y}
$$
$\therefore$ Solution is given by
$$
\begin{aligned}
& x \cdot e^{\tan y^{\prime} y}=\int \frac{\tan ^2 y}{1+y^2} e^{\tan y^{\prime}} d y+k \\
& \Rightarrow \quad x \cdot e^{\tan ^{\prime} y}=\int t \cdot e^t d t+k \quad\left[\text { where, } \tan ^2 y=t\right. \text { ] } \\
& \Rightarrow \quad x \cdot e^{\tan { }^{\prime} y}=t e^t-e^t+k \\
& \Rightarrow \quad x e^{\tan ^2 y}=e^{\tan ^2 y}\left(\tan ^3 y-1\right)+k \\
& \Rightarrow \quad x=\left(\tan ^2 y-1\right)+k e^{\tan ^3 y} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.