Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $\frac{d x}{d t}=\frac{x \log x}{t}$ is
MathematicsDifferential EquationsMHT CETMHT CET 2021 (23 Sep Shift 2)
Options:
  • A lot $x-x=c$
  • B $\mathrm{e}^{\mathrm{ct}}+\mathrm{x}=0$
  • C $\log \mathrm{t}=\mathrm{x}+\mathrm{c}$
  • D $\mathrm{e}^{\mathrm{ct}}=\mathrm{x}$
Solution:
1392 Upvotes Verified Answer
The correct answer is: $\mathrm{e}^{\mathrm{ct}}=\mathrm{x}$
$\begin{aligned} & \frac{d x}{d t}=\frac{x \log x}{t} \\ & \therefore \int \frac{d x}{x \log x}=\int \frac{d t}{t} \\ & \therefore \log |\log x|=\log |t|+\log c \\ & \therefore \log x=t c \Rightarrow x=e^{t c}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.