Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $\frac{d y}{d x}=1+x+y+x y$ is
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2018 (07 May Shift 1)
Options:
  • A $\log (1+x)=y+\frac{x^2}{2}+k$
  • B $y=x+\frac{x^2}{2}+k$
  • C $\log (1+y)=\frac{x^3}{3}+k$
  • D $y=k e^{x+\frac{x^2}{2}}-1$
Solution:
1653 Upvotes Verified Answer
The correct answer is: $y=k e^{x+\frac{x^2}{2}}-1$
We have,
$$
\begin{aligned}
& \frac{d y}{d x}=1+x+y+x y \\
\Rightarrow & \frac{d y}{d x}=(1+x)(1+y) \Rightarrow \frac{d y}{1+y}=(1+x) d x
\end{aligned}
$$
On integrating both the sides, we get
$$
\begin{gathered}
\quad \int \frac{d y}{1+y}=\int(1+x) d x \\
\Rightarrow \log (1+y)=x+\frac{x^2}{2}+c \Rightarrow 1+y=e^{x+\frac{x^2}{2}+c} \\
\Rightarrow \quad y=e^{x+\frac{x^2}{2}} \cdot e^c-1
\end{gathered}
$$


$$
\Rightarrow \quad y=k e^{x+\frac{x^2}{2}}-1 \quad\left[\text { where, } k=e^c\right. \text { ] }
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.