Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation \( \frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right) \) is (where \( c \) is an arbitrary constant)
MathematicsDifferential EquationsJEE Main
Options:
  • A \( \ln \tan \left(\frac{y}{2}\right)=c-2 \sin x \)
  • B \( \ln \tan \left(\frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right) \)
  • C \( \ln \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=c-2 \sin x \)
  • D \( \ln \tan \left(\frac{y}{4}+\frac{\pi}{4}\right)=c-2 \sin \left(\frac{x}{2}\right) \)
Solution:
1954 Upvotes Verified Answer
The correct answer is: \( \ln \tan \left(\frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right) \)

Given equation

dydx+sinx+y2=sinx-y2

 dydx=sinx-y2-sinx+y2

 dydx=-2siny2 cosx2

 cosec y2dy=-2cosx2dx

On integrating both sides, we get

cosec y2dy=-2cosx2dx

lntany412=2sinx212+c

lntany4=c2sinx2

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.