Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $x+y \frac{d y}{d x}=\sec \left(x^2+y^2\right)$ is
MathematicsDifferential EquationsMHT CETMHT CET 2021 (20 Sep Shift 1)
Options:
  • A $\sin \left(x^2+y^2\right)=2 x+c$
  • B $\sin \left(x^2+y^2\right)+2 x=c$
  • C $\sin \left(x^2+y^2\right)+x=c$
  • D $\cos \left(x^2+y^2\right)=2 x+c$
Solution:
2618 Upvotes Verified Answer
The correct answer is: $\sin \left(x^2+y^2\right)=2 x+c$
$\begin{aligned} & \text { We have, } x+y \frac{d y}{d x}=\sec \left(x^2+y^2\right) \\ & \text { Put } x^2+y^2=u \Rightarrow 2 x+2 y \frac{d y}{d x}=\frac{d u}{d x} \\ & \therefore x+y \frac{d y}{d x}=\frac{1}{2} \frac{d u}{d x} \\ & \therefore \frac{1}{2} \frac{d u}{d x}=\sec u \\ & \therefore \int \frac{d u}{\sec u}=\int 2 d x \\ & \therefore \sin u=2 x+c \\ & \Rightarrow \sin \left(x^2+y^2\right)=2 x+c\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.