Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the system of equations  sin 3 x + sin 3 2 π 3 + x + sin 3 4 π 3 + x + 3 4 cos  2 x = 0  and  cosx0 is
MathematicsTrigonometric EquationsJEE Main
Options:
  • A x=2k+1π10, kZ
  • B x=2k+1π5, kZ
  • C x=4k+1π10, kZ
  • D x=4k+15π, kZ
Solution:
1086 Upvotes Verified Answer
The correct answer is: x=4k+1π10, kZ
sin3x=3sinx-4 sin3x  sin3x=143sinx-sin3x  

The given equation reduces to

143sinx-sin3x+143sin2π3+x- sin2π+3x+14(3sin4π3+x-sin4π+3x+34cos2x=0 

3sinx+sin2π3+x+sin4π3+x-sin3x+sin2π+3x+sin4π+3x+3cos2x=0

3 sinx+2sinx cos 2π3-3sin3x+3cos2x=0

⇒    sin 3x=cos 2⇒ cosπ2-3x=cos 2x2x=2±π2-3x

⇒    5x=2kπ+π2=4k+1π2 kZ or  x=-2+π2, kZ

⇒    x=4k+1π10kZ    cosx0

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.