Search any question & find its solution
Question:
Answered & Verified by Expert
The given following circuit is equivalent to

Options:

Solution:
1099 Upvotes
Verified Answer
The correct answer is:


Let $\mathrm{p}$ : The switch $\mathrm{S}_1$
$\mathrm{q}$ : The switch $\mathrm{S}_2$
The symbolic form is
$$
(p \wedge \sim q) \vee(\sim p \wedge q) \vee(\sim p \wedge \sim q)
$$
$\begin{aligned} & \equiv(p \wedge \sim q) \vee[\sim p \wedge(q \vee \sim q)] \\ & \text {...[Distributive Law] } \\ & \equiv(p \wedge \sim q) \vee[\sim p \wedge t] \\ & \text {...[Complement Law] } \\ & \equiv(p \wedge \sim q) \vee \sim p \\ & \text {...[Identity Law] } \\ & \equiv \sim p \vee(p \wedge \sim q) \\ & \text { [Commutative Law] } \\ & \equiv(\sim p \vee p) \wedge(\sim p \vee \sim q) \\ & \text {.[Distributive Law] } \\ & \equiv \mathrm{t} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \\ & \text {.[Complement Law] } \\ & \equiv \sim p \vee \sim q \\ & \text {.[Identity Law] } \\ & \end{aligned}$
$\mathrm{q}$ : The switch $\mathrm{S}_2$
The symbolic form is
$$
(p \wedge \sim q) \vee(\sim p \wedge q) \vee(\sim p \wedge \sim q)
$$
$\begin{aligned} & \equiv(p \wedge \sim q) \vee[\sim p \wedge(q \vee \sim q)] \\ & \text {...[Distributive Law] } \\ & \equiv(p \wedge \sim q) \vee[\sim p \wedge t] \\ & \text {...[Complement Law] } \\ & \equiv(p \wedge \sim q) \vee \sim p \\ & \text {...[Identity Law] } \\ & \equiv \sim p \vee(p \wedge \sim q) \\ & \text { [Commutative Law] } \\ & \equiv(\sim p \vee p) \wedge(\sim p \vee \sim q) \\ & \text {.[Distributive Law] } \\ & \equiv \mathrm{t} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \\ & \text {.[Complement Law] } \\ & \equiv \sim p \vee \sim q \\ & \text {.[Identity Law] } \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.