Search any question & find its solution
Question:
Answered & Verified by Expert
The image of the point with position vector \((\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})\), in the plane \(\mathbf{r} \cdot(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})+3=0\) is
Options:
Solution:
1030 Upvotes
Verified Answer
The correct answer is:
\((-3,5,2)\)
Let the image of the point with position vector \((\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})\) in the plane \(\mathbf{r} \cdot(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})+3=0\) is \(\left(x_2, y_2, z_2\right)\), so
\(\frac{x_2-1}{2}=\frac{y_2-3}{-1}=\frac{z_2-4}{1}=-2 \frac{2-3+4+3}{4+1+1}=-2\)
\(\Rightarrow \quad x_2=-3, y_2=5 ; z_2=2\)
Hence, option (d) is correct.
\(\frac{x_2-1}{2}=\frac{y_2-3}{-1}=\frac{z_2-4}{1}=-2 \frac{2-3+4+3}{4+1+1}=-2\)
\(\Rightarrow \quad x_2=-3, y_2=5 ; z_2=2\)
Hence, option (d) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.